
Composite Engineer's Viewpoint Rik Heslehurst PhD, MEng, BEng(Aero) FIEAust, FRAeS, CPEng, SMAIAA

Designing with Composite Materials Part 7E – Detail Design – Sandwich Structures

In this article we investigate the general design guidelines for sandwich structures with composite face sheets. Firstly, we define a sandwich structure as a face sheet (skin) of fibre reinforced composite material and a core of either honeycomb, or foam or some low density material. The dimensions of the skins and core are defined in the following diagram.

Where:

d = panel depth

t =facing thickness

c =core thickness

s = cell size (honeycomb)

 t_c = honeycomb cell wall thickness

Note:

b =panel or beam width

h =distance between skin centroid

$$= d - \frac{\left(t_1 + t_2\right)}{2}$$

The benefits and disadvantages with foam or honeycomb core sandwich structure are as follows:

- Benefits:
 - ➤ High flexural stiffness-to-weight ratio
 - > Energy absorption capability with crushing
 - ➤ Low heat transfer with low conductivity through-the-thickness
 - ➤ Noise and vibration insulation and reduction
 - ➤ Better bending strength-to-weight ratio efficiency (skins take the axial loads more efficiently)
- Disadvantages
 - > Relativity low damage tolerance
 - ➤ Moisture absorption potential
 - ➤ Repairability
 - ➤ Edgewise crushing

The basic sandwich structure sizing requirements can be estimated from a simplified analysis approach. This approach assumes that the skin thickness at least 1/10th the thickness of the core.

Face sheets bending stresses:

$$\sigma_{skin} \approx \frac{M}{t_s h b}$$

where: M = Panel bending moment

 $t_{\rm s}$ = skin thickness

Skin dimpling stress:

$$\sigma_{cr_{\text{dim pling}}} \approx \frac{2E_s}{1 - v_x v_y} \left(\frac{t_s}{s}\right)^2$$

Where: E_s = Composite skin Young's modulus v = Skin major and minor Poisson's ratios

Transverse Deflections: $\delta_{total} = \delta_{bending} + \delta_{shear}$

Bending: $\delta_{bending} = K_b \frac{Pl^3}{D}$

Core Young's modulus: $E'_{c} \approx 0$

Panel flexural rigidity: $D \approx \frac{E_s t_s h^2}{2(1 - v_x v_y)}$

 K_b = see table below

Core shear stress:

Assumes that the core modulus $E'_c \approx 0$

$$\tau_{core} \approx \frac{V}{hb}$$

where: V = section transverse shear load

Skin wrinkling stress:

$$\sigma_{cr_{wrinkling}} \approx 0.82 E_s \sqrt{\frac{E_c t_s}{E_s t_c}}$$

Where: E_C = core compression modulus

Shear:
$$\delta_{shear} = K_s \frac{Pl}{hG_c}$$

 $G_{\mathcal{C}}$ = core shear modulus

 K_S = see table below

Beam Type	V _{max}	M_{max}	K_b	K_{S}
Simply supported with uniformly distributed load	0.5P	0.125 <i>Pl</i>	0.0130	0.125
Fixed with uniformly distributed load	0.5P	0.0.833Pl	0.0026	0.125
Simply supported with central point load	0.5P	0.25Pl	0.0208	0.25
Fixed supported with central point load	0.5P	0.125 <i>Pl</i>	0.00521	0.25
Cantilever with uniformly distributed load	P	0.5Pl	0.125	0.5
Cantilever with end point load	P	Pl	0.0667	0.333

In the next article I will comment on the issue of interlaminar stresses in a little more detail. The basic areas of concern were interlaminar stresses are considered a potential problem and methods of reducing excessive interlaminar stress build-up. As always I welcome questions, comments and your point of view. Feel free to contact me via r.heslehurst@adfa.edu.au. I may publish your questions and comments, and my response in future articles.